

The fuzzy C-code
generator FALCO

Overview 3

Generation of C code 6
Activating the code generation 6
Opening FUZ files 6
Settings 6

Code generation 7
Number formats 8
Output path and filenames 9
Load and save settings 9

Representation of the generated code 10

Structure of the generated code 11
Data structure of a fuzzy controller 11
Functions of a fuzzy controller 14

Usage of the C code 15
Usage of a code production 15
Usage of several code productions with different
number formats 18
Usage of several code productions with the same
number format but different precision 21

2 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Creating programs for arbitrary fuzzy controllers 21
Code parameter files 21
Creating a code template file 21
Code generation using a code template file 21

Libraries 21
Fuzzy libraries 21
Numerical Libraries 21

General properties 21
Standard floating point numbers F4, F8 and F10 21
2 byte floating point F2 21
Fixed point numbers I2 and I4 21

FALCO's template transscriptor 21
Functionality 21
Variables and instructions 21

Variables 21
Instructions 21

#WF_code_block 21
#WF_code_block_end 21
#WF_write_to 21
#WF_include 21
#WF_define 21
#WF_insert_code_block 21
#WF_path 21
#WF_show_message 21
#WF_foreach 21
#WF_if 21
#WF_expr 21

 Overview 3

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Overview

The C source code generator FALCO (the name FALCO stands for "Fuzzy
Application C code generator) makes the production of ANSI C code for Fuzzy
systems possible, which were developed with the help of the WinFACT Fuzzy
Shell FLOP. The C source code is divided into two files. One of them has the
ending C and contains the implementation, the other one is the associated
header file (extension h); it defines the interface for your own application.
FALCO is characterised by the following capabilities:

• Comfortable editor for files of the programming language C.

• Parallel processing of several systems possible.

• The generated C code exists completely as the source code. It is com-
mentated and held well readably. By fragmentation into different files
the later time of compiling your application is reduced.

• The data types are freely selectable by the user (16 bit integer, 32 bit
integer, 2 byte float, float, double, long double). With the integer types
you can define fixed point format of numbers. With the 2 byte float ty-
pe the mantissa and exponent bit width is user defineable.

• By code templates main functions written by yourself can be used for
arbitrary Fuzzy systems.

The application FALCO was designed as MDI application (multiple document
interface). This has the advantage for you to view and validate several code
productions at the same time. The following graphic shows the application
window of FALCO immediately after start.

4 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

FALCOs main window

Besides some standard components the window contains

• a horizontal toolbar below the main menu for direct access to the most
important functions,

• one or more document windows which contain a fuzzy file and the
generated C code files.

 Overview 5

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Document window with generated code

The status line at the bottom of the document window shows the current posi-
tion of the cursor, the state of the document, the mode (Insert, Override, or
Read only), the full name of the file and the software version. The document
window itself has an editor, which allows comfortable reading and changing of
code files. For changing there are all known main functions in the menu EDIT
available. Editing FUZ files is not allowed here (you should use the program
FLOP). If you select a document window with a FUZ file, the entries of the
menu EDIT become disabled. The functions for editing are the following:

• undoing last operation,

• redoing last undone operation,

• cutting, copying and pasting of text and

• searching for and replacing of text.

Edit
operations

6 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Generation of C code

Activating the code generation

It is only possible to start the code generation, if a FUZ file was loaded in the
active document window. The settings for code generation refer to the active
document window and can be made without a FUZ file. When settings are
made and a FUZ file was loaded, you can start the code generation via the
menu item CODE GENERATION | GENERATE CODE or by clicking the button.

Opening FUZ files

The fuzzy system which is to be processed, must be in a file with the extension
FUZ, like it is generated by the WinFACT fuzzy shell FLOP at saving. The file
can be loaded by clicking the button or via the menu item FILE | OPEN... into
the active document window. A previously loaded file would be overwritten in
the document window thereby. If code productions were generated for this file,
you are asked whether these should be saved. If you want to use a new docu-
ment window for the fuzzy system, this must be created by FILE | NEW first.

Settings

Before the generation of C code, usually some settings are to be made, those
concern among other things the resolution, i. e. the used C data type for the
linguistic variables and membership values. All settings are made via CODE
GENERATION | SETTINGS... The configuration of the code generator carried out
in this dialog applies only to the active document window. All others remain
uninfluenced.

 Generation of C code 7

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Dialog for configuration of the code generator

The configuration dialog of the code generator contains three registers:

• Code generation
• Number format
• Output path and filenames

Code generation

The register for the code generation offers the possibility to you of defining the
fuzzy controller as constant. This means that all values, which constitute the
controller, will have constant definition in the produced C code. With the next
check box you can specify whether the fuzzy controller is to be exported. If
you decide for export, the appropriate export definition will be written into the
header file. The further points of this register are discussed in detail later. They
are briefly outlined here.

The type and variable identifier of a data structure defined in a C-file for ex-
ample could be assumed as parameters of another code sequence in which you
would like to use the structure. Thus the code sequence, which uses these pa-
rameters, has validity for all files, which define these parameters. This basic
approach is pursued by the code parameter files and the C code templates. If
there is a need for a code parameter file outside FALCO, it can be created by
choosing the check box Create code parameter file.

By the use of a C code template you can achieve the call of the produced C
functions. In addition a CSH file (code sheme file) must be specified, which
contains at least one main function (the chapter Creating programs for arbi-
trary fuzzy controllers describes the use of code pattern files in detail with an

8 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

example). As soon as you entered a CSH file into the appropriate entry field
(this can be done more comfortably by the button Search...), the available main
functions will appear in the selection box below.

Number formats

The code generator is able to use different formats of numbers. The selected
number format will be used by all real valued parameters of the fuzzy control-
ler. All other parameters are represented by integers or enumerations. Via the
register Number format of the configuration dialog the appropriate format can
be set.

Number formats for code generation

The following two basic number formats are possible:

• Floating point numbers

• Fixed point numbers

Floating point numbers let you choose within all native C data types (float,
double, long double). Additionally a two byte floating point type is offered,
which has a selectable number of the mantissa and exponent bits.

The range for the number of mantissa bits is between 5 and 14, for the number
of exponent bits between 1 and 8. Only within these ranges it can be calculated
with this number notation reasonably.

The fixed point numbers are defined exclusively by the number of the integer
part bits and fractional part bits. If the sum of both is larger than 15, then a four
byte data type is used, otherwise a two byte data type is chosen internally. In

Data
types

 Generation of C code 9

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

the chapter Numerical Libraries you can find the specification of the fixed
point number types and the two byte floating point type.

Output path and filenames

Because one FUZ file can have more than one generated source code files,
espacially when operating with code template files, it is obvious to store these
files in one directory. You can choose this ouput directory in the register Out-
put path and filenames.

Register for configuring path and filenames

The file name of all source code files can be derived from the FUZ file or it can
be predetermined manually. In the entry field the manually set file name may
not have an extension (the dot also belongs to the extension). The file name
will be enlarged by a token derived from the number format if the check box
Expand by number format specifier is chosen. So duplicate file names are pro-
hibited when generating code from the same FUZ file with different format of
numbers.

Load and save settings

All settings which have been made for a document window, can be saved by
the menu item FILE | SAVE SETTINGS... . The created file has the extension FCF
(FALCO Configuration Files). By the menu item FILE | LOAD SETTINGS... the
settings will be loaded and attached to the active document window.

10 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Representation of the generated code

The generated source code appears in the same document window. The win-
dow now contains serveral tabs by which the productions of code can be
reached.

Document window after code generationFehler! Verweisquelle konnte nicht gefunden

werden.
every file has its own tab

In the picture above the code generation was carried out for the example file
highway.fuz without modification of settings. Two files are produced:

1. a C file, which contains the structure of the fuzzy controller and

2. a header file, which forms the interface to the C file.

For usage in programs, several files (libraries) are required additionally, which
also belong to the scope of delivery. These cover the functions for calculating
with the chosen number format on the one hand, on the other hand some gen-
eral functions for fuzzy controllers are defined here (chapter Usage of C code).

 Structure of the generated code 11

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Structure of the generated code

The code generated by FALCO consists of a header file and a C file. The pa-
rameters, which build the data of the fuzzy controller, are stored in a C code
structure. The function using this structure, is defined in the fuzzy libraries,
which are delivered fully in source code. FALCO writes functions, in which
the library functions are called.

Data structure of a fuzzy controller

You need the knowledge of the data structure, if you want to change the fuzzy
controller later.

The main structure, which contains the whole fuzzy controller parameters,
consists itself of other data structures. The following list shows all items of a
fuzzy controller.

• Number of input variables

• Number of ouput variables

• Number of premises of the rule base

• Linguistic input variables

• Linguistic output variables

• Premise, conclusion and weighting of the rule base

• Inference mechanism

• Operator for fuzzy-AND

• Operator for fuzzy-OR

• Defuzzification method

• Number of integration steps for defuzzification methods which have to
solve an integral like center of gravity

All data, which represents a number of, are positive integer values. The decla-
rations of operators, method of defuzzification and inference mechanism are

12 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

done by enumerations, to get well readably C code. The enumeration types are
defined in fuzzy_enums.h, which is enclosed in the scope of delivery.

The linguistic variables are divided into input and output variables, to assign
different types of data structures to them. Both consist of a number of sets, but
only the structure of the output variables contains a predefined output value.
This value is used in case that no rule defines the output and the output is not
set to be unchanged. Just to take this discrepance into account, two different
data structures are implemented.

The premises and conclusions are unidimensional arrays, which contain inte-
gers. The values index the fuzzy sets (the index is shifted by one). If you imag-
ine the rule base as two tables, one containing the premises and the other con-
taining the conclusions, the values of the arrays represent the values of the
rows of the respective table successively. The column number of the tables is
identical to the index of the linguistic input resp. output variables. Negative
indices in the array of the premise indicate a negatived fuzzy set.

The weighting is a unidimensional array of real numbers. You can realize this
as a third table with only one column.

Example:

Premise Conclusion Weighting

E1 E2 A1 A2

1 1 1 3 1

-1 2 1 2 0.5

1 3 2 1 0.75

1 4 2 1 0.8

Saving of premises: {1, 1, -1, 2, 1, 3, 1, 4}

Saving of conclusions : {1, 3, 1, 2, 2, 1, 2, 1}

Saving of weightings : {1, 0.5, 0.75, 0.8}

For completion only the information on how the fuzzy sets are stored is miss-
ing. Here was also defined a simple data type: A fuzzy set consists of an array
of pair of values and their number. Every pair of values describes a striking
point of the fuzzy set.

Altogether the whole data for a fuzzy controller in source code is stored as it is
shown in the following listing of the file fuzzy_F2.h (the token F2 is a number
format specifier standing for 2 byte floating point numbers). The type Num-

 Structure of the generated code 13

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

TypeF2_t is defined in the library for calculating with 2 byte floating point
numbers. The enum types are defined in fuzzy_enums.h.

typedef unsigned char NumOfVal_t;

typedef struct{
 NumOfVal_t n;
 const NumTypeF2Point_t* p;
}FuzzySetF2_t;

typedef struct{
 NumOfVal_t n;
 const FuzzySetF2_t* fs;
 NumTypeF2_t defaultvalue;
 char defaultactive;
}LinguisticOutputVariableF2_t;

typedef struct{
 NumOfVal_t n;
 const FuzzySetF2_t* fs;
}LinguisticInputVariableF2_t;

typedef struct{
 NumOfVal_t nI;
 NumOfVal_t nO;
 NumOfVal_t nR;
 const LinguisticInputVariableF2_t* iL;
 const LinguisticOutputVariableF2_t* oL;
 const char* pre;
 const char* con;
 const NumTypeF2_t* w;
 enum Inference_t inf;
 enum Defuzzy_t method;
 unsigned char steps;
 enum FuzzyAnd_t AndOp;
 enum FuzzyOr_t OrOp;
}FuzzyControllerF2_t;

14 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Functions of a fuzzy controller

A fuzzy controller generated by FALCO constists of four functions. The names
of the functions are composed by the name of the FUZ file, the number format
specifier (if this was selected) and the inherent function name.

The following function declarations are generated without modification of the
settings from the file highway.fuz in the header file:

void highway_F4_SetNumType(void);
void highway_F4_init(void);
void highway_F4_calc(
 const NumTypeF4_t i0,
 const NumTypeF4_t i1,
 NumTypeF4_t *o0);
void highway_F4_free(void);

Successivly the meaning of these functions is described.

The function ...SetNumType ensures the correct parameters of the chosen num-
ber format. If the number format has no parameters, the implementation of this
function in the generated C file is empty. Only the fixed point numbers and 2
byte floating point numbers have parameters (number of precomma bits and
number of postcomma bits resp. number of the bits for the exponent and num-
ber of the bits for the mantissa). With these formats it is necessary to call the
function before the others. However, it is not harming to call it generally for all
numbers formats before the other functions. In the cases in which the imple-
menting is absent the call is removed by the compiler.

The initialization function (... _init) allocates memory for the calculation func-
tion. Therefore, it must be called once before calling this function.

The calculation function (... _calc) is the one and only function which must be
called with arguments. It needs the input values of the fuzzy controller and the
addresses of the variables in which the output values are to be stored after the
computation. The input values and output values have to be given in the same
order in which the linguistic input variables and output variables were defined
within FLOP. The data types correspond to the number format you selected
when generating code. The data types themselves are defined in the numeric
libraries (s. Chapter Numerical libraries). The calculation function may be
called arbitrarily often one after another.

The function to release (... _free) the reserved memory (reserved by the initiali-
zation function) may be called when the calculation function is not needed any

 Usage of the C code 15

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

more. After the call of the release function the initialization function can be
called again (if allocation and release of memory takes place frequently within
the program execution, it should be guaranteed that the memory management is
efficient enough to handle it).

Usage of the C code

First of all the simple usage is discussed. Afterwards a program will be created,
which compares the accuracy of several code generations. Finally we'll have a
look at peculiarities which occur by the usage of several code productions with
the same number format and the usage of code template files.

Usage of a code production

The usage of the generated source code within a program is explained with an
example here. We use the result of the code generation from the example file
highway.fuz, which you find in the subdirectory Examples. The following set-
tings should be made to this example.

Code generation:

Define fuzzy controller as const

Number Format:

Number Type: Floating point

Data type: float

Output path and filenames:

Output path: c:\temp

Filenames: Create from FUZ-filename and
Expand by number format specifier

The generated code consists of two files with the names highway_F4.c and
highway_F4.h. A program is to read the values of the inputs of the produced

16 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

fuzzy controller from the keyboard and show the result on the screen. Only
ANSI-C functions should be used.

#include <stdio.h>
#include "highway_F4.h"

int main(int argc, char **argv)
{
 NumTypeF4_t e1, e2, a1;
 printf("Please enter two values: ");
 scanf("%f %f",&e1, &e2);
 highway_F4_SetNumType();
 highway_F4_init();
 highway_F4_calc(e1, e2, &a1);
 highway_F4_free();
 printf("Result: %f",a1);
 fflush(stdin);
 getchar();
}

This program reads the input values from the keyboard by scanf(), sets the
number format (because the internal number format is float, the function high-
way_F4_SetNumType does nothing at all), initializes the fuzzy controller, then
applies highway_F4_calc() for the calculation of the output value, releases the
fuzzy controller again and shows the result on the screen.

The header stdio is demanded for the functions printf, scanf, fflush and getchar,
highway_F4 for the fuzzy controller functions. The data type NumTypeF4_t is
declared in NumType_F4.h and is announced by including highway_F4.h. It
corresponds to the data type float. If you write down the files, which are in-
cluded by the compiler, in the order it runs through the source code, you will
get the following list (standard header left out!):

highway_F4.h

fuzzy_F4.h

fuzzy_enums.h

NumType_F4.h

The indentation indicates which file integrates which header. Should this rather
trivial program be created now, you have to ensure that these header files and
the C files of the same name can be accessed by the compiler (fuzzy_enums.h
has no corresponging C file). Hence you must enter appropriate searching paths
within your compiler. The directory for the fuzzy header files and C files is in
the autocode directory and is called fuzzy. For the different numeric data types
there is also a subdirectory in the autocode directory which is called NumType.
These both subdirectories must be passed to the compiler as searching paths, so
that the compiling process runs without problems.

 Usage of the C code 17

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

After the compiling process the produced object files have to be linked. The
linker also must know the searching paths to get access to the required files, so
that all external references can be found. For details of setting the searching
paths of the linker and compiler please refer to the manual or the help of the
compiler.

As an example, the project is shown within the Borland C++ Builder Version
3.0.

The example within the Borland C++ Builder (Version 3.0)

As you can see, the project consists of three C files, the header files specified at
the top and of the main program HighwayExample1.cpp, which contains only
the above listing and some lines automatically produced by the development
environment. When program execution is done, you will get the following
ouput:

The example after execution

18 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Usage of several code productions with different number
formats

On the basis of an example it will be shown how several code generations of a
FUZ file can be compared to different number formats. The settings to the code
generation are adopted from the last chapter. Then the setting of the number
format is changed.

The following number formats are applied:

1. 2 byte floating point (5 bit exponent, 11 bit mantissa),

2. 2 byte fixed point (9 integer part bits, 7 fraction part bits) and

3. floating point numbers with the data type double

For code generation you can create three document windows via FILE | NEW
and load the file highway.fuz in each of them. Modify the settings for a docu-
ment window and save them. Afterwards you load the saved settings for the
other document windows and change only the number format. Pay attention at
all costs to the fact that actions (Configure, Load and Save), which concern the
settings, always belong to the active document window!

If everything was done properly, you will get the following files:

highway_F8.h and highway_F8.c

highway_F2.h and highway_F2.c

highway_I2.h and highway_I2.c

Of course it is not necessary to do this in the way described here, you can also
use a document window and produce the files step by step (three times: change
configuration, generate code, save files).

Now these files are integrated into the main program:
#include <stdio.h>
#include "highway_F8.h"
#include "highway_F2.h"
#include "highway_I2.h"

int main(int argc, char **argv)
{
 NumTypeF8_t f8e1, f8e2, f8a1;
 NumTypeF2_t f2e1, f2e2, f2a1;
 NumTypeI2_t i2e1, i2e2, i2a1;
 NumeratorF2_t f2n;
 DenominatorF2_t f2d;
 NumeratorI2_t i2n;

 Usage of the C code 19

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

 DenominatorI2_t i2d;
 double rf2, ri2;

 printf("Please enter two values: ");
 scanf("%lf %lf",&f8e1, &f8e2);
 highway_F8_SetNumType();
 highway_F2_SetNumType();
 highway_I2_SetNumType();
 highway_F8_init();
 highway_F2_init();
 highway_I2_init();
 f2e1 = opF2FromFraction(f8e1*100,100);
 f2e2 = opF2FromFraction(f8e2*100,100);
 i2e1 = opI2FromFraction(f8e1*100,100);
 i2e2 = opI2FromFraction(f8e2*100,100);
 highway_F8_calc(f8e1, f8e2, &f8a1);
 highway_F2_calc(f2e1, f2e2, &f2a1);
 highway_I2_calc(i2e1, i2e2, &i2a1);
 highway_F8_free();
 highway_F2_free();
 highway_I2_free();
 opF2ToFraction(f2a1, &f2n, &f2d);
 opI2ToFraction(i2a1, &i2n, &i2d);
 rf2=(double)f2n/f2d;
 ri2=(double)i2n/i2d;
 printf("Result(F8 F2 I2): %lf %lf %lf", f8a1, rf2, ri2);
 fflush(stdin);
 getchar();
}

Here the same conditions, considering the searching paths for compiling and
linking, exist as described in Usage of a code production. New in this source
code are the functional calls which begin with op, and the Numerator and De-
nominator types; they are defined in the libraries NumType_F2 resp. Num-
Type_I2. The opXXFromFraction functions calculate a fraction given by the
numerator and denominator in the number format XX. The other direction (cal-
culating a value to a fraction) can be done by opXXToFraction, which assumes
the first argument as the corresponding value and the last both arguments as the
addresses where to store the numerator and denominator values. Every library
which defines a number format that is not a standard numbers format (float,
double, long double), also defines these both functions for the transformation
of fractions.

The project in the Borland C++ Builder (Version 3.0) looks like the following:

20 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Project management of Borland C++ Builder (Version 3.0)

As shown in the above picture, appropriate files for the fuzzy controller's func-
tions of the separate numeric data types (fuzzy_XX.c) and the files for comput-
ing with these data types (NumType_XX.c) are to be integrated into the project.

If the project is built and executed, the program issues the following:

Terminal window after program execution

The comparison of the accuracy of separate code productions for different
numeric data types can be performed with the result now. Besides, the result of
the 8 byte floating point number can be regarded as the sufficiently exact one.
If one compares now the other both results to this one, it is obvious that the
fuzzy controller with fixed point number arithmetic has a lower exactness than
with 2 byte floating point number arithmetic.

 Usage of the C code 21

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Usage of several code productions with the same
number format but different precision

The number formats which allow a configuration of the accuracy are the 2 byte
floating point numbers and the fixed point numbers. The exactness of the float-
ing point numbers is determined by the number of the bits in the mantissa,
those of the fixed point numbers by the number of the bits of the fractional
part. This section refers only to the number formats mentioned at the top!

Again based on the file highway.fuz, two code productions should be produced
with the number format 2 byte floating point, one time with 4 bits for the expo-
nent and 12 bits for the mantissa, the other time with 6 bits for the exponent
and 10 bits for the mantissa. Because both code productions use 2 byte floating
point numbers, the extension of the file names by the number format specifier
does not ensure unique file names in this case. Therefore additionally use the
possibility to choose the file name freely. Here the file names

highway_4_12 and

highway_6_10

are chosen. After the code generation in two document windows FALCO looks
like it is shown in the following picture:

Creation of two different code productions from

the same FUZ file

22 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Now these code productions should be compared to one generated with the
floating point data type double (it was already produced in the previous sec-
tion). The source code of the main function is very similar to that in the section
Usage of several code productions with different number formats.

#include <stdio.h>
#include "highway_F8.h"
#include "highway_4_12_F2.h"
#include "highway_6_10_F2.h"

int main(int argc, char **argv)
{
 NumTypeF8_t f8e1, f8e2, f8a1;
 NumTypeF2_t f2e1, f2e2, f2a1;
 NumeratorF2_t f2n;
 DenominatorF2_t f2d;
 double r_6_10_f2, r_4_12_f2;

 printf("Please enter two values: ");
 scanf("%lf %lf",&f8e1, &f8e2);
 highway_F8_SetNumType();
 highway_F8_init();
 highway_F8_calc(f8e1, f8e2, &f8a1);
 highway_F8_free();

 highway_4_12_F2_SetNumType();
 highway_4_12_F2_init();
 f2e1 = opF2FromFraction(f8e1*100,100);
 f2e2 = opF2FromFraction(f8e2*100,100);
 highway_4_12_F2_calc(f2e1, f2e2, &f2a1);
 highway_4_12_F2_free();
 opF2ToFraction(f2a1, &f2n, &f2d);
 r_4_12_f2=(double)f2n/f2d;

 highway_6_10_F2_SetNumType();
 highway_6_10_F2_init();
 f2e1 = opF2FromFraction(f8e1*100,100);
 f2e2 = opF2FromFraction(f8e2*100,100);
 highway_6_10_F2_calc(f2e1, f2e2, &f2a1);
 highway_6_10_F2_free();
 opF2ToFraction(f2a1, &f2n, &f2d);
 r_6_10_f2=(double)f2n/f2d;

 printf("Result (F8 4_12 6_10): %lf %lf %lf", f8a1, r_4_12_f2,
r_6_10_f2);
 fflush(stdin);
 getchar();
}

In the above listing the sequence of the different calculations was separated.
The reason is the following: the 2 byte floating point library can handle only
one information for the number of mantissa and exponent bits at a time. If the

 Usage of the C code 23

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

SetNumType functions were called directly one after another like it is done in
the previous section, only the last call would show effect.

The representation of the project administration shows, which files belong to
this example:

Project management of the Borland C++ Builder (Version 3.0)

The screen shot of the ouput of the program is not shown here. The following
lines make the program execution clear.

Please enter two values: 25 80

Result (F8 4_12 6_10): 64.516129 64.531250 64.375000

Creating programs for arbitrary fuzzy controllers

After the previous chapters it should be possible for you to integrate a code
production produced by FALCO manually into a program. In this section, it is
explained how a program can be applied for arbitrary fuzzy controllers. In
addition the knowledge about the construction of code template files is an
advantage (s. Chapter FALCO's template transscriptor). But the instructions
are so clear, that the appropriate chapter can also be read later.

The program is to read all input values of a Fuzzy controller from the keyboard
and ouput the results of the fuzzy controller on the screen. This should happen
by the call of a function. So the main function simply calls this C function. It is
to be declared in a header file KeybInFuzzyMonOut.h which has also to be
produced:

void KeybInFuzzyMonOut(void);

The implementation should be written into the file KeybInFuzzyMonOut.c.

24 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Code parameter files

Looking at a code parameter file you can easily identify what parameters are
needed for creating the function template. The following listing represents the
code parameter file, which was produced when generating the file highway.fuz
for floating point arithmetic (data type float).

@WF_num_inputs@=2
@WF_num_outputs@=1
@WF_numtype@=NumTypeF4_t
@WF_out_file@=highway_F4
@WF_call_set_numtype@=highway_F4_SetNumType
@WF_call_init@=highway_F4_init
@WF_call_calc@=highway_F4_calc
@WF_call_free@=highway_F4_free
@WF_nf@=F4
@WF_par_type@=
@WF_par_var@=
@WF_num_format@=F=4 M=11 E=4 V=9 N=7 Xn=0x nX=

In the code parameter file variables, surrounded by @, are defined for the code
template transformer. The meaning of the variables is not reflected here in
particular, because it is almost given by the names (further information follows
implicitly in the next section). Variables are lists (here the lists count only one
element) and have the following functional character in the code template files:

• @WF_num_inputs@ is replaced by the list on the right side of the
equals sign (in this case only the '2').

• @WF_num_inputs[i]@ is replaced with the i-th element of the zero
based list on the right side of the equals sign (assuming i>0, would
cause an error in this example, because the list contains only one ele-
ment and is zero based; for i=0 the result would be '2' and is identical
to the above case; when the list contains only one element
WF_num_inputs@=@WF_num_inputs[0]@ is valid)

The indicated form is more specific and is to prefer, even if it is not needed
because of the case of equality. The variables @WF_par_type@ and
@WF_par_var@ are assigned only if the fuzzy controller should be exported,
which is a setting of the code generation. @WF_num_format@ is explained in
the section to #WF_expr (s. chapter FALCO's template transscriptor).

 Usage of the C code 25

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Creating a code template file

The creation of a code template file can take place gradually in verbal form. So
the substance is described in human language and transferred in the second step
directly to the code template which consists of variables and instructions for
the template transscriptor and pure C code. The verbal formulation should be
as close as possible to the corresponding instructions of the template transscrip-
tor to make clear which instructions are suitable (this of cause can be done
even better if you know the instructions, but in this case, it is a good method
for learning them).

In the following we will pick up the example from the previous chapter. The
verbal description and its conversion into the template are given alternately:

1. First of all in the header file KeybInFuzzyMonOut.h should be written.
Only the functional declaration is to be written. If the header file is inte-
grated into a bigger project several times, we can ensure that it is only in-
cluded once by the #ifndef C preprocessor directive. Furthermore the ex-
tern "C" directive must be specified, if a C++ compilers is used and we
have to pay attention on linking conventions.
#WF_write_to(KeybInFuzzyMonOut.h)

#ifndef KeybInFuzzyMonOut
#define KeybInFuzzyMonOut KeybInFuzzyMonOut

#ifdef __cplusplus
extern "C"{
#endif

 void KeybInFuzzyMonOut(void);

#ifdef __cplusplus
}
#endif

#endif

2. The header file is completed with that and from now on we write the func-
tional implementing in the file KeybInFuzzyMonOut.c, which includes this
header file and a header file which was generated by FALCO. In addition,
the ANSI C standard header file stdio.h is still demanded for input/output
handling.
#WF_write_to(KeybInFuzzyMonOut.c)

#include "KeybInFuzzyMonOut.h"
#include "@WF_out_file[0]@.h"
#include <stdio.h>

26 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

void KeybInFuzzyMonOut(void)
{

3. For every input value and for every output value we have to declare vari-
ables, which store the corresponding values. Their type is the selected nu-
merical data type.
@WF_numtype@ e[@WF_num_inputs[0]@];
@WF_numtype@ a[@WF_num_outputs[0]@];

4. If 2 byte floating point or fixed point numbers are used, variables for con-
version between fractions and these types have to be defined. Also a vari-
able is needed for storage of the real value of a fraction.
#WF_if (@WF_nf@ ~~ F2,I2,I4)
 Numerator@WF_nf@_t n;
 Denominator@WF_nf@_t d;
 double reell;
#WF_endif

5. Setting the parameter of the number format (calling of SetNumType-
function)
@WF_call_set_numtype[0]@();

6. For each input variable a value has to be read form the keyboard and if 2
byte floating point or fixed point numbers are used, every given value has
to be converted into the appropriate format.
for (i=0; i<@WF_num_inputs[0]@; i++){
 printf("Please enter the %d. value:",i+1);
 scanf("%lf", &reell);
 #WF_if (@WF_nf[0]@ ~~ F2,I2,I4)
 e[i] = op@WF_nf[0]@FromFraction(reell*100,100);
 #WF_else
 e[i] = reell;
 #WF_endif
}

Note:

The value i for the loop has to be defined before putting the fragments of
the template together. Furthermore the variable real is only defined when
using 2 byte floating point or fixed point numbers. This also has to be
changed.

7. Call of the initialization function
@WF_call_init[0]@();

8. Call of the calculating function with all input values and all addresses of
the output values.

 Usage of the C code 27

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

@WF_call_calc[0]@(
 #WF_foreach($var, 0..@WF_num_inputs[0]@-1){
 e[$var],
 }
 #WF_foreach($var, 0..@WF_num_outputs[0]@-1){
 #WF_if(WF_LAST_1)
 &a[$var]
 #WF_else
 &a[$var],
 #WF_endif
 });

9. Call of the function for releasing allocated memory
@WF_call_free[0]@();

10. All output values have to be displayed on the screen. For 2 byte floating
point and fixed point, the values have to be converted into real values be-
fore.
for (i=0; i<@WF_num_outputs[0]@; i++){
 #WF_if (@WF_nf[0]@ ~~ F2,I2,I4)
 op@WF_nf[0]@ToFraction(a[i], &n, &d);
 reell = (double)n/d;
 #WF_else
 reell = a[i];
 #WF_endif
 printf("%d. Output = %lf\n", i+1, reell);
}

11. Last but not least we should wait for a keystroke to get a look at the out-
puts and have to close the function with the right brace (in 2 we used the
left one).
 fflush(stdin);
 getchar();
}

We obtain the following code template, considering the note in item 6 and
adding the #WF_code_block instructions (for a better survey of the two files
generated by this template the corresponding lines are highlighted):

#WF_code_block(Tastatureingabe & Bildschirmausgabe, MAIN)

#WF_write_to(KeybInFuzzyMonOut.h)

#ifndef KeybInFuzzyMonOut
#define KeybInFuzzyMonOut KeybInFuzzyMonOut

#ifdef __cplusplus
extern "C"{
#endif

void KeybInFuzzyMonOut(void);

28 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

#ifdef __cplusplus
}
#endif

#endif

#WF_write_to(KeybInFuzzyMonOut.c)

#include "KeybInFuzzyMonOut.h"
#include "@WF_out_file[0]@.h"
#include <stdio.h>

void KeybInFuzzyMonOut(void)
{
 @WF_numtype@ e[@WF_num_inputs[0]@];
 @WF_numtype@ a[@WF_num_outputs[0]@];
 double reell;
 int i;

 #WF_if (@WF_nf@ ~~ F2,I2,I4)
 Numerator@WF_nf@_t n;
 Denominator@WF_nf@_t d;
 #WF_endif

 @WF_call_set_numtype[0]@();

 for (i=0; i<@WF_num_inputs[0]@; i++){
 printf("Please enter the %d. value:",i+1);
 scanf("%lf", &reell);
 #WF_if (@WF_nf[0]@ ~~ F2,I2,I4)
 e[i] = op@WF_nf[0]@FromFraction(reell*100,100);
 #WF_else
 e[i] = reell;
 #WF_endif
 }

 @WF_call_init[0]@();

 @WF_call_calc[0]@(
 #WF_foreach($var, 0..@WF_num_inputs[0]@-1){
 e[$var],
 }
 #WF_foreach($var, 0..@WF_num_outputs[0]@-1){
 #WF_if(WF_LAST_1)
 &a[$var]
 #WF_else
 &a[$var],
 #WF_endif
 });

 @WF_call_free[0]@();

 for (i=0; i<@WF_num_outputs[0]@; i++){

 Usage of the C code 29

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

 #WF_if (@WF_nf[0]@ ~~ F2,I2,I4)
 op@WF_nf[0]@ToFraction(a[i], &n, &d);
 reell = (double)n/d;
 #WF_else
 reell = a[i];
 #WF_endif
 printf("%d. Output = %lf\n", i+1, reell);
 }
 fflush(stdin);
 getchar();
}
#WF_code_block_end

It is important that the instruction for starting a code block has MAIN as the last
argument. Only then FALCO detects this function as a main function and you
can select it in the configuration dialog.

Code generation using a code template file

The code generation with a code template file is only carried out, if the accord-
ing settings are chosen:

• Use c code template as call has to be selected,

• the file, which contains the template described before, has to be entered
and

• the main function also has to be selected.

After code generation with the above settings, a document window gets two
more tabs which have the names of the new files:

30 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

FALCO after code generation with the use of the

code template from the previous chapter

The information how to build the programm was described in the chapters
before, so there is no need to repeat it here.

Libraries

The generated source code does not contain all information needed for the
computation of a fuzzy controller. The numerical and the general functions of a
fuzzy controller are conciously separated. This increases clarity and speeds up
a repeating compilation in greater projects, because the libraries need to be
compiled only once. The separation for the numerics is done for every single
numerical type. A code template exists for the general fuzzy libraries, which

 Libraries 31

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

will create the files fuzzy_XX.h and fuzzy_XX.c when applied (XX denotes the
number format specifier).

Fuzzy libraries

The fuzzy libraries were, as mentioned above, generally composed as C code
template. The file CreateFuzzyLibraries.CSH can be used to create fuzzy li-
braries for all numerical types. It is only required to load a FUZ file in a docu-
ment window and do the following configuration for code generation:

• select Use C code template as call,

• select the main function: Create Fuzzy Libraries

• specify the Output path

The advantage of this strategy is, that changes have to be made in only one file
and occur in all fuzzy libraries after applying the template. To change specific
libraries (e. g. the fixed point ones), the #WF_if instruction of the code tem-
plate transscriptor can be used.

A fuzzy library defines all operations, which are needed for a computation of a
fuzzy controller. These are the following fundamental functions, which are not
discussed here:

• calculation of a membership value

• the operation fuzzy-AND

• calculation of the inference

• computation of an output value via different defuzzification methods

The following functions are declared as interface in the header file (XX denotes
the number format specifier):

• A function for allocating resources and initialization:
void FCXX_init(const FuzzyControllerXX_t *fc,
 FCMemXX_t *v);

• A function for computation:
void FCXX_calc(const FuzzyControllerXX_t *fc,
 FCMemXX_t *v,
 NumTypeXX_t *e,
 NumTypeXX_t *a);

• A function for releasing resources:

32 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

void FCXX_free(const FuzzyControllerXX_t *fc,
 FCMemXX_t *v);

The declarations of the interface functions may never be changed, because
these are expected by FALCO in just this form. However, you may change the
implementation. In the header file the data types of the arguments are also
defined. FuzzyControllerXX_t was described by the data types already in the
section Data structure of a Fuzzy controller. This data structure is expected
from FALCO also accurately in this form. Changes in it are not allowed!

The data structure FCMemXX_t serves for the storage of inner states. Their
fields are allocated by the initialization function and released in the free func-
tion. Here is the declaration of the data structure:

typedef struct{
 Bool_t **ihit;
 Bool_t **ohit;
 NumTypeXX_t **imv;
 NumTypeXX_t **omv;
 NumTypeXX_t *res;
 }FCMemXX_t;

After a call of the function for computation, it contains the information:

• if the n-th set of the m-th linguistic input variable was hit by a crisp input
value:
ihit[m][n]

• which membership value was calculated for the n-th set of the m-th input
variable:
imv[m][n]

• if th n-th set of the m-th linguistic ouput is to be defined by a active rule:
ohit[m][n]

• the match of degree for the n-th set of the m-th linguistic output variable:
omv[m][n]

• the crisp value for the m-th linguistic output variable:
res[m]

FALCO creates a variable with the type of this data structure in the generated
code. Should this variable be accessed, the fuzzy controller must be exported
(s. chapter Settings). Only then FALCO declares this variable without storage-
class-specifier static (it is considered by the compiler as external, only that the
kind of linkage is not indicated explicitly). With the help of a code template
sequence the variable can be written in the associated header file what manages
the access.

 Libraries 33

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

#WF_code_block(Access to FCMem)
#WF_write_to(@WF_out_file[0]@.h)

#ifndef @WF_out_file[0]@_FCMem
#define @WF_out_file[0]@_FCMem @WF_out_file[0]@_FCMem

extern FCMemXX_t @WF_out_file[0]@_FCMem;

#endif

#WF_code_block_end

Numerical Libraries

The numerical libraries define the basic mathematic operations (+,-, *,/) for a
certain numeric data type.

The understanding of the libraries is usually not required for the understanding
of a generated code! However, it can be meaningful to carry out a special im-
plementing of the numeric for a certain target hardware, to exhaust around
capabilities better.

General properties

It is not possible in ANSI C to define operators dependent on variable type. If
one wants to write C code independent from the numeric, this can be managed
only by functions which recreate these fundamental operations. With the float-
ing point data types (float, double and long double) these functions are imple-
mented only as macros which contain the original operation. With the fixed
point numbers and the not standardized floating point numbers the functions
are real implementations.

The choice of name of the numeric libraries is unambiguous, so that mixing
different types within an application will be possible. The clarity is achieved by
a number format specifier.

The following table represents the context.

Number format Specifier Library name

2-Byte-Fixed point I2 NumType_I2.c
NumType_I2.h

4-Byte- Fixed point I4 NumType_I4.c
NumType_I4.h

34 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

2-Byte-Floating point F2 NumType_F2.c
NumType_F2.h

4-Byte- Floating point F4 NumType_F4.c
NumType_F4.h

8-Byte- Floating point F8 NumType_F8.c
NumType_F8.h

10-Byte- Floating point F10 NumType_F10.c
NumType_F10.h

Every library defines a data type NumTypeXX_t, whereat XX is to be replaced
with the specifier. This data type is derived from a fundamental data type (s.
below). With this type all calculations can be executed. Besides a data type is
available for a pair or values (NumTypeXXPoint_t) which consists of two fields
x and y of the data type NumTypeXX_t.

The declarations for the number format F4 (4 byte floating point) looks as
follows:

typedef float NumTypeF4_t;

typedef struct{
 NumTypeF4_t x, y;
}NumTypeF4Point_t;

The fundamental data type of the library for 4 byte floating point numbers is
float.

The libraries define constants of the type NumTypeXX_t for the maximal and
minimal representable numbers as well as for the value 1:

• XXMax

• XXMin

• XXOne

As well every library defines their own functions (partly also macros; s. above)
for the implementation of binary and unary operators. All names of the func-
tions which represent operators start with op followed by the number format
specifier. They end with the name of the function which they implement (Mul,
Div, Add, ...).

In the following table functions are listed which are contained in all libraries.
Besides, the applied identifier a, b and c have always the data type Num-
TypeXX_t.

 Libraries 35

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Operator function Meaning

a = opXXAdd(b, c) a = b + c

a = opXXSub(b, c) a = b - c

a = opXXMul(b, c) a = b * c

a = opXXDiv(b, c) a = b / c

a = opXXNeg(b) a = -b

a = opXXInv(b) a = 1 / b

i = opXXG(b, c) i = b > c

i = opXXGE(b, c) i = b >= c

i = opXXL(b, c) i = b < c

i = opXXLE(b, c) i = b <= c

i = opXXE(b, c) i = b == c

i = opXXNE(b, c) i = b != c

a = opXXCast(d) a = d in the number format XX

The type of the variable d has to be
of the fundamental type of the used
number format.

The operator functions allow to write C code in connection with the code tem-
plate transscriptor, which is independent of the number format (s. chapter
Fuzzy libraries). However, this is obtained by a certain loss of legibility which
can be reduced a little.

It should be shown with an arithmetic expression how such a conversion looks.
The expression

adcba −⋅+=

with the above operator functions for 2 byte floating point numbers has the
following appearance:

a = opF2Add(
 b,
 opF2Sub(
 opF2Mul(c, d),
 a)
);

36 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

The readability of these expressions can be increased by indentation, like it is
usually done in source codes.

Standard floating point numbers F4, F8 and F10

The data types for the formats F4, F8 and F10 correspond to the floating point
types float, double and long double (these are also the appropriate fundamental
data types for opFXCast). All operator functions are implemented as macros. If
a division by zero occurs, the result will be the maximum representable posi-
tive or negative number (according to sign of the dividend) of the appropriate
format.

2 byte floating point F2

The 2 byte floating point numbers have an adjustable number of exponent and
mantissa bits. Therefore, the library must be informed of these settings, before
it can be calculated with this number type. This is made by the call of the func-
tion SetNumTypeF2Format the declaration of which is to be seen here:

void SetNumTypeF2Format(const unsigned char anF2ManBit,
 const unsigned char anF2ExpBit);

The calculations which are executed before the call of this function are indefi-
nite. If another call of this function with another number of exponent or man-
tissa bits takes place, the results of the previous calculations may not be applied
just like that.

Example:
NumTypeF2_t a, b, c;

SetNumTypeF2Format(11, 4);
/*calculate a little bit*/
a=F2One;
b=opF2Add(F2One, F2One);

SetNumTypeF2Format(10, 5);
/*from this point a and b are interpreted wrong !*/
c=opF2Sub(b, a); /*c ist hier nicht = F2One !!!!*/

SetNumTypeF2Format(11, 4);
/*from this point a and b are interpreted correct !*/
c=opF2Sub(b, a); /*c = F2One !!!!*/

To explain what happens in particular in this example, it is first to be described
how values are stored resp. interpreted in the format F2.

The numerical values are stored in the fundamental data type short in depend-
ence on the IEEE format. This means that the representation of the floating

 Libraries 37

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

point x is based on a decomposition of a sign v, a mantissa m and an exponent e
to the basis 2:

emvx 2⋅⋅=

Because the number of bits of m and e is finite, an appropriate inaccuracy ap-
pears with the representation; the number x is not represented exactly. The
exactness is given by the number of bits in the mantissa, the co-domain is de-
termined by the number of the bits in the exponent. If 4 bits are configured for
the exponent and 11 bits for the mantissa, a number is presented as follows
within 2 bytes:

Bit position: 15 14 11 10 0

v eeee mmm mmmm mmmm

v has for negative numbers the value 1, otherwise 0. The mantissa is produced
in such a way that their value is between 1 and 2. The 1 before the comma is
not stored to save space. To the exponent a shift (Bias) is added, so that this is
positive and different from zero in all cases. The exception of this rule is the
number zero, here v, e and m are set to zero.

As an example the numbers from -5 to +5 with an 11 bit wide mantissa and a 4
bit wide exponent are represented here. The Bias within this representation is 8.
The Term 1 in the sum of the mantissa m corresponds to the not stored 1 men-
tioned at the top. It is inapplicable for the value 0.

Value Mapping Description

-5 0xD200 v=1 e=10-8 m=1+1/4

-4 0xD000 v=1 e=10-8 m=1

-3 0xCC00 v=1 e=9-8 m=1+1/2

-2 0xC800 v=1 e=9-8 m=1

-1 0xC000 v=1 e=8-8 m=1

0 0x0000 v=0 e=0 m=0

1 0x4000 v=0 e=8-8 m=1

2 0x4800 v=0 e=9-8 m=1

3 0x4C00 v=0 e=9-8 m=1+1/2

4 0x5000 v=0 e=9-8 m=1

5 0x5200 v=0 e=10-8 m=1+1/4

38 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

If one looks at the example above, the value for the constant F2One is mapped
to 0x4000. Before the second call of SetNumTypeF2Format the variables con-
tain the following:

• a = 0x4000 corresponds to the value 1

• b = 0x4800 corresponds to the value 2

After changing the format, the interpretation of the mapping would result to:

• a = 0x4000 still corresponds to the value 1

• b = 0x4800 now corresponds to the value 4

As a result c gets the value 3 (0x4600), which is interpreted after the last call of
SetNumTypeF2Format to 1.75.

Simply avoid a mixture of different F2 numbers!

In the library NumType_F2.c there are further functions implemented, which
allow a conversion of a number into a fraction and vice versa. The data types
used within these functions are NumeratorF2_t and DenominatorF2_t, they are
defined in the header file of the library. The data type DenominatorF2_t can
only contain positive integers! The functions are declared as follows:

NumTypeF2_t opF2FromFraction(NumeratorF2_t numerator,
 DenominatorF2_t denominator);

void opF2ToFraction(NumTypeF2_t f1,
 NumeratorF2_t *numerator,
 DenominatorF2_t *denominator);

Example:

The number 3.125 should be converted into the F2 format with 11 mantissa
bits and 4 bits for the exponent:

SetNumTypeF2Format(11,4);
F2Result = opF2FromFraction((short)(3.125*1000), 1000);

After execution F2Result contains the sedecimal value 0x4C80. If F2Result
should be converted back into a real number, the small code sequence below
can be used (assuming that the number of bits for exponent and mantissa wasn't
changed):

NumeratorF2_t zaehler;
DenominatorF2_t nenner;
double reell;

opF2ToFraction(F2Result, &zaehler, &nenner);
reell = (double)zaehler/nenner;

 Libraries 39

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

The conversion into fractions ensures, that the value of the denominator is
different to zero. When converting a fraction into a real number, the denomina-
tors inequality to zero is not checked!

An overflow caused by an operation, is treated by giving back the maximal
represantable number with the correct sign.

Fixed point numbers I2 and I4

The fixed point numbers have the settings:

• number of the precomma bits and

• number of the postcomma bits.

Before it can be calculated with fixed point numbers, the library must be in-
formed about these settings via the call of the function SetNumTypeI2Format
or SetNumTypeI4Format.

A number is stored in the fundamental data type short or long int. The number
to be mapped is simply multiplied by the value nn2 , whereat nn is the number
of the postcomma bits. The following table shows of the numbers -2 to +2 in
steps of 0.5:

Value Mapping

-2 -256

-1.5 -192

-1 -128

-0.5 -64

0 0

0.5 64

1 128

1.5 192

2 256

In the fixed point number libraries NumType_I2.c and NumType_I4.c functions
are also implemented for the conversion in and from a fraction. The declara-
tions for it have been made in dependence on the numbers format F2. In these
libraries also exist own data types for numerator and denominator values. By

40 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

the data type DenominatorI2_t or DenominatorI4_t it is guaranteed that de-
nominator values can contain only positive integers.

As an example the number 3.125 should be converted into the format I2 with 9
precomma bits and 7 postcomma bits:

NumTypeI2_t I2Result;

SetNumTypeF2Format(9,7);
I2Result = opI2FromFraction((short)(3.125*1000), 1000);

After the execution, I2Result contains the number 400 (125.32400 7 ⋅=).
Should I2Result be changed back into a fraction, it can be made by the call
opI2ToFraction:

NumeratorI2_t zaehler;
DenominatorI2_t nenner;

opI2ToFraction(I2Result, &zaehler, &nenner);

FALCO's template transscriptor

The template transscriptor minimizes your time and effort of programming.
You create a file in the template specified here, the transscriptor creates the
appropriate source code files which you need for your projects. The principle is
very simple. The template transscriptor reads your template file and executes
the instructions contained in it. Variables are replaced by their value. So it will
be possible to use one template for arbitrary code generations.

Functionality

The functionality of the template transscriptor is rather simple. He receives the
contents of a CPF file (code parameter file) and a CSH file (code
scheme/template file) as input data and interprets the CSH file from the entry
point (s. below).

 FALCO's template transscriptor 41

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

The template of the CSH file contains instructions which are executed by the
transscriptor and variables, the values of which are taken from the code pa-
rameter file. The variables in the template are simply replaced by their values.

If a piece of code should be applied for arbitrary fuzzy controllers, the number
of the input and output parameters, the numeric type, the names of the func-
tions etc. have to be written as variables. In the section Code parameter files,
you find an example of a CPF file in which all variables are specified. It is not
necessary, to choose the setting Create code parameter file to work with the
transscriptor.

The given CSH file is divided into separate code fragments, also named code
blocks, whereat at least one is marked as an entry point for the transscriptor (s.
Instruction #WF_code_block). The template transscriptor reads the CSH file,
executes the contained instructions and writes the result in an internal list with
the name main.c. Afterwards this can be saved as a file under this name. By the
instruction #WF_write_to (s. below) the writing can be redirected in a list with
another name (file name). If the instruction is the first after the entry point of
the CSH file, the main.c will not be created.

Variables and instructions

The template transscriptor knows different instructions and variables which
may occur during the interpretation of the CSH file. He distinguishes between
local and global variables.

Variables

The transscriptor distinguishes between local and global variables. The global
variables are always those which are defined in a CPF file. Local variables can
be produced only by the instructions #WF_foreach and #WF_code_block. For
further information on these instructions consult the appropriate sections (s.
below).

The meaning of most global variables can be concluded from their names.
They all begin with @WF_ and end with @ to separate them from the rest of
the code. In the section Code parameter files you find an example of a CPF
file, in which all global variables are explained.

42 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

Instructions

Instructions always begin with the mark # followed from two capital letters
WF_ and an instruction name written in small letters. Arguments of an instruc-
tion are generally put in parentheses.

Within the following description of instructions optional arguments are put in
brackets. To select one from several possibilities, these possibilities are sepa-
rated by |. The set of all possibilities is given in braces. The meaning of {1 | 2 |
3} is either 1 or 2 or 3, but not all numbers and also not none of the numbers!

Some instructions can contain lists. These are character strings, which are
separated by comma. In addition, there are integer range definitions. Given by
two numbers with two dots inbetween (e.g.: -2..2). Range definitions may also
be elements of a list (e. g.:-2. 2, 4. 10, a, b, c). Both integer values of a range
definition may be algebraic expressions (e. g.: 5+2 .-3 + @WF_num_inputs
[0]@)

#WF_code_block

Syntax:
#WF_code_block(Name [{($a,$b,...) | ,main }])

Defines the beginning of the code block name. The code block is made avail-
able as an entry point for the template transscriptor, if the main is chosen in-
stead of the list. A code block can always be inserted by
#WF_insert_code_block at another place within the template. If the parenthised
list ($a, $b...) is used instead of the main, the elements of the list become local
variables with the interpretation of the code block (it can be appropriate to let
the local variables also end with $, see #WF_foreach). These are valid only
within this code block. The values of the variables are defined by the use of the
block by #WF_insert_code_block. A code block must always be closed with
#WF_code_block_end!

#WF_code_block_end
Syntax:

#WF_code_block_end

Defines the end of the current code block.

#WF_write_to
Syntax:

#WF_write_to(filename)

 FALCO's template transscriptor 43

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

The output stream is redirected in an internal list with the name filename until
this instruction with another file name occurs or the code block is left. At the
start of the template transscriptor it is written in the file main.c, until this in-
struction is parsed by the transscriptor.

#WF_include

Syntax:
#WF_include character string

The preprocessor-directive #include character string is constructed and is
appended to an internal include list of the current output file, if the character
string is not already found in the list.

#WF_define
Syntax:

#WF_define a b

A define directive is created and appended to the define list of the current out-
put file. This instruction may use the backslash to mask the end of line (this
means the next line is concatenated with the previous from the view of the
transscriptor):

#WF_define abs3D(a,b,c) \
 (sqrt ((a)*(a) +\
 (b)*(b)+\
 (c)*(c)\
)\
)

#WF_insert_code_block
Syntax:

#WF_insert_code_block(Name[(List of arguments)]
 [, { Filename{.REF|.CSH} | HERE } [,EVER]])

Inserts a code block in the template. The parameters will be transfered in order
to the local variables of the code block; the order is defined by the
#WF_code_block instruction. The code block is searched in the current file if
no filename or HERE is indicated. If the file name has the extension .REF, the
indicated name is searched in a reference file. In this case the work goes on
with the appropriate reference. If extension is .CSH, the block is searched in
the appropriate CSH file. The given file is searched in current and all directo-
ries set by the #WF_path instruction.

The build in identifier HERE means that the code section should be taken from
this template file. If EVER is indicated, the insertion of this code section is

44 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

implemented also if this was already inserted in the current output file. Nor-
mally every code block can be written only once in an output file.

#WF_path
Syntax:

#WF_path(Directory1[; Directory2;....])

Sets the searching directories for the instruction #WF_insert_code_block
(s. above).

#WF_show_message

Syntax:
#WF_show_message(Message, Window title)

As long as the template transscriptor parses this instruction, the message is
displayed in a modal dialog window with appropriate window title. It must be
confirmed by the button OK!

#WF_foreach
Syntax:

#WF_foreach ($Variable[$], List){
...further lines of the code template
}

This instruction is used for creation of loops. It is appropriate to end the loop
variable with $, if the further lines of the code template contain $variable in the
middle of an identifier.

Example:

The following output should be produced: " x_t y_t z_t ". The following code
fragment looks correct first.

#WF_foreach ($var, x, y, z){$var_t }

However, unfortunately, it does not work, because the transscriptor supposes
that $var_t is a local variable. By ending with $ it is clarified:

#WF_foreach (var, x, y, z){var_t }

The loop variable is set to the next value of the list with every iteration. If the
element of the list is an integer range definition, the defined range will passed
through entirely (i.e. $variable$ is also set to every separate value of this range
definition). In range definitions a..b iteration is always started with the value a
and it ends with the value b in steps of 1. a and b can be algebraic expressions.

 FALCO's template transscriptor 45

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

Within the following template lines the loop variable is replaced with the value
of the current step.

Example:

The following code sequence demonstrates the strength of the #WF_foreach
instruction:

#WF_foreach(i, a,b,c){
 /* i :*/#WF_foreach(j, 0..2){$i$$j$=}0;
}

It creates the following output:
/* a: */ a0=a1=a2=0;
/* b: */ b0=b1=b2=0;
/* c: */ c0=c1=c2=0;

The #WF_foreach instruction implicitly defines a local variable with the name
WF_LAST_n. n stands for n-th nested loop in this code block. It is started
with n=1. The above example produces a variable WF_LAST_1 for the outer
loop and for the inner one a variable with the name WF_LAST_2. The values
of the variables equal to 1 if the last iteration of the loop, which created this
variable, is reached, otherwise 0. The variables exist only within the loops.
They are extremely useful for branching.

#WF_if
Syntax:

#WF_if (simple logical expression)
 Code template lines A
[#WF_else
 Code template lines B]
#WF_endif

The #WF_if instruction realizes a branch. The code template lines A
are only interpreted if the simple logical expression has true as a result. If the
result of the simple logical expression is false and assumed that #WF_else
exists, the code template lines B are read and interpreted. A simple logical
expression has only one binary operator which separates the left and right side,
which may be arithmetic expressions. The following tables specify all binary
operators:

Operators for algebraic expressions

Operator Meaning
== equal
!= unequal
>= greater or equal
<= less or equal

46 8 The fuzzy C-code generator FALCO

 Ingenieurbüro Dr. Kahlert 1991-2006 WinFACT 7 User Manual Release 1.0

> greater
< less

In addition, it is possible to examine whether a variable is not equal to zero, in
this case simply the variable is to be indicated.

Operators for character strings

Operator Meaning
~~ the right side is allowed to be a list. If the left string is in

that list the condition is met (true).
!~ negated version of ~~

In addition, it is possible to examine whether a variable contains no letters, in
this case also simply the variable is to be indicated.

#WF_expr

Syntax:
#WF_expr(number format description, algebraic expression)

The instruction calculates the result of the algebraic expression and converts it
into the indicated number format. The number format is given by the following
statements:

F=n Uses floating point numbers with n bytes

M=n If F=2 the number of mantissa bits is to be set to n,
otherwise it will be ignored.

E=n If F=2 the number of exponent bits is to be set to n,
otherwise it will be ignored.

V=n If F=n is not indicated, n is the number of precomma
bits for fixed point numbers.

N=n If F=n is not indicated, n is the number of postcomma
bits for fixed point numbers.

Xn=Z If F=2, the representation for a sedecimal number is
defined. Z is to be issued before the hexadecimal value
(has to be set to Xn=0x in ANSI-C).

nX= Z If F=2, the representation for a sedecimal numbers is
defined. Z is to be issued after the hexadecimal value
(is not to be set in ANSI-C !).

 FALCO's template transscriptor 47

WinFACT 7 User Manual Release 1.0  Ingenieurbüro Dr. Kahlert 1991-2006

The global variable @WF_num_format@ contains the complete information to
convert a number into the selected number format for code generation.

Format Required statements

F10 F=10

F8 F=8

F4 F=4

F2 F=2
M=Mantissa bits
E=Exponent bits
Xn=0x
nX=

I4 and I2 V=number of bits for the integer part
N=number of bits for the fraction part

Example:

The value 3.125 should be converted into the number format I4 with 13 pre-
comma and 11 postcomma bits:

#WF_expr(V=13 N=11, 3.135)

